

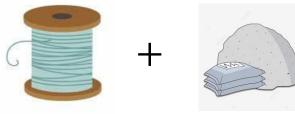
FRC配筋材

全てのRC補修に使える汎用的な鉄筋代替材料です。

特願2022-132945 特願2023-019328 NETIS 申請中

一般社団法人繊維強化コンクリート協会

Fiber Reinforced Concrete Asociation


目次

FRC配筋材は全てのRC補修に使える汎用的な鉄筋代替材

- 1. FRCとは
- 2. 繊維の種類
- 3. 施工例
- 4. 性能実験 FRC袋状材
- 5. 性能実験 FRC配筋材

1. FRCとは?

● 繊維強化コンクリート「Fiber Rein Forced Concrete」略称です。

● FRCは繊維とコンクリートの複合材です。

繊維

コンクリート

● FRCは袋状材と配筋材に分かれます。

管に使う袋状 FRC

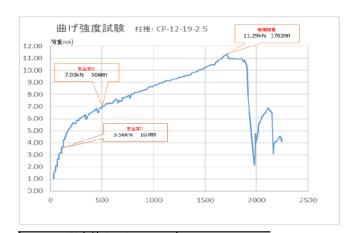
2. 繊維の種類

高強力ポリエチレン繊維

■ FRCに使う繊維

繊維の種類	強度	弾性	耐久性	耐屈曲性	絶縁性
炭素繊維(カーボン)	0	0	0	Δ	Δ
高強力ポリエチレン繊維	0	0	0	0	0

■ 用途


繊維の種類	袋状材の用途	配筋材の用途	要求
炭素繊維(カーボン)	鋼管全般	RC全般	耐火性
高強力ポリエチレン繊維	コンクリート電柱 鋼管全般	RC全般	絶縁性

3. 施工例

4. 性能試験、 FRC袋状材

■ 曲げ強度グラフ

測定値(CP)						
P:荷重	L: 荷重点距離	Mμ:破壊	変位	安全率:F		
(kN)	(m)	(kN·m)	(mm)	$(M \mu / 2M)$		
第3回試験 供試体No. 全1						
3.56	9.75	34.71	107	1.02		
7.03	9.75	68.54	506	2.01		
11.29	9.75	110.08	1,702	3.23		

結果、FRC袋状材「PC電柱材」

設計強度3.5KN電柱の破壊強度は11KN

設計強度の3倍以上の十分な耐力を得ます。

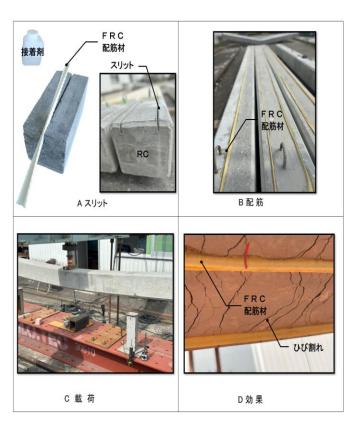
7. 試験写真

① 3.5 kX 食位 100nn

② 9.0 kN 衰位1,100mm

写真2: 試験前 緊張側の鉄度切断

(2) 7. OkN 変位 500m


④ 最大荷重 11 kN 变位 1,700m

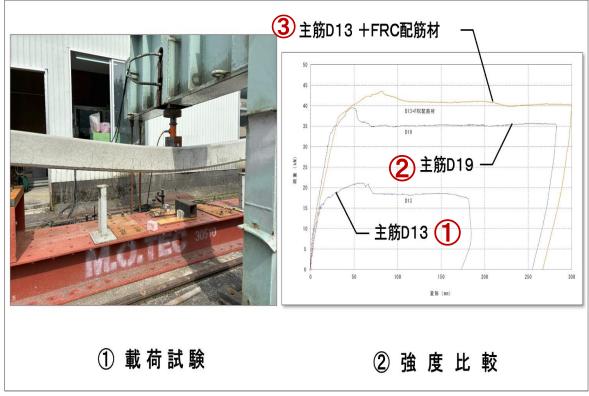


写真3: 試験後 IT規模語

JIS規準での曲げ強度試験を実施します。 安全基準は設計強度の2倍です。

5. 性能試験、 FRC配筋材

結果、

①主筋D13-4本のRC梁、最大荷重23KNに対しFRC配筋材D16-2本を底部に入れることで②主筋D19-4本のRC梁、最大荷重39KNを超える③43KNの補強効果を得ます。 これは既存RC構造物のコンクリート表面から容易に且つ安価に施工できて、体積も重量も一切増やさずに大きな耐力を得ることができる、配筋材です。